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Preamble 
 
A CORDEX white paper describing the scientific challenges in regional climate modelling 
and setting the basis for the CORDEX science plan and for a better-informed decision-
making process at regional scale was made publicly available in May 2021 (Solman et 
al. 2021). While the first paper focused primarily on dynamical downscaling, here we 
present a complementary paper focusing on empirical statistical downscaling (ESD) 
strategies. We describe the ongoing CORDEX ESD work and identify specific challenges, 
both methodological and more practical, related to the provision of useful information 
to decision-makers through ESD. A description of the CORDEX general framework 
(including domain activities and Flagship Pilot Studies, FPS) and links with other 
initiatives are described in Solman et al. (2021). 
 
Both documents form the basis of the CORDEX Science Plan and have been open for 
comments so that the community can participate in the development of CORDEX and 
regional climate science.  
 
 

Current state and achievements of CORDEX ESD activities 
 
Downscaling methods follow a wide range of approaches (perfect prognosis – PP, 
model output statistics – MOS, hybrid PP-MOS and bias adjustment, weather 
generators, etc.) which are applied individually or in combination to produce 
regional/local information from global or regional model outputs.  Most of the work 
developed in the framework of CORDEX can be broadly classified in the following 
groups of activities: 
 
Perfect prognosis (PP) – relating large-scale GCM predictors to local response. PP 
methods have been developed and applied in different CORDEX domains (including 
Europe - EUR, South America - SAM, East Asia - EAS, and South Asia - WAS) and FPSs, 
typically at a regional (national or subnational) scale, considering station data and 
focusing on a few variables (e.g. precipitation and temperature). Some 
intercomparison studies have been conducted assessing the performance of the 
methods with perfect (reanalysis) predictors (e.g. over EUR: Maraun et al., 2015; 
Vaittinada et al., 2015; Gutiérrez et al., 2019; Maraun et al., 2019; and SAM: Bettolli et 
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al., 2021). Recent developments using machine learning techniques (in particular deep 
learning) have allowed continental-scale applications using gridded observations more 
comparable with the RCM experimental framework (Vandal et al., 2019; Baño-Medina 
et al., 2021). The typical application of these methods is to use the relationships as 
found in observations to predict/simulate an expected/stochastic value from a GCM 
predictor, or to infer a local response conditioned in some way by the GCM. In addition, 
downscaling can be approached by matching the large-scale conditions with local 
conditions for each time-step (‘downscaling weather’) or downscaling the parameters 
of probability density functions (pdfs) directly (‘downscaling climate’; Benestad, 2021).   
 
The selection and transformation of predictors have a major influence in the 
configuration of ESDs (Cavazos and Hewitson, 2005; Gutiérrez et al., 2019) and a variety 
of approaches have been used, including pre-processing approaches such as the use of 
EOF and neural networks to capture main spatial modes of variability (features). Some 
machine-learning approaches build on spatial features learn automatically from data 
via, e.g. convolutional neural networks (Baño-Medina et al., 2021), self-organizing 
maps (SOMs) (Cavazos 2000; Skific et al., 2010).  
 
Hybrid PP-MOS for predictor data framing. The Hybrid PP-Model output statistics 
(MOS) approach involves both reanalyses and GCM simulations in the calibration of the 
downscaling methods, and under the “common EOF” approach, both GCM and 
reanalysis information are used to calculate the EOFs thus bringing extra information 
in the calibration phase. Whereas MOS accounts for systematic biases in the simulated 
output, common EOFs ensure that the exact same covariance structure used in the 
calibration of the downscaling methods is utilised when downscaling the GCM output. 
They also reveal biases in the simulations and can facilitate a bias correction of the GCM 
results (Benestad et al., 2001).  
 
MOS Bias adjustment – adjusting GCM/RCM model outputs to local scale. The 
development of bias adjustment methods for GCM/RCM model outputs according to 
regional/local observations is an active field of research boosted by the increasing 
demand and use of these products by the impact and adaptation communities. RCM 
bias adjustment can be considered a hybrid method in the sense that it combines both 
dynamical and statistical downscaling. A variety of applications and intercomparison 
studies have been undertaken in many CORDEX domains (see the CORDEX publications 
list1) and actionable datasets of adjusted CORDEX RCM ensembles have been produced 
and made publicly available (e.g. McGinnis and Mearns, 2021). The CORDEX archive 
design (and the data reference syntax, DRS) have been expanded to archive CORDEX 
bias adjusted2 results in the Earth System Grid Federation (ESGF) and some adjusted 
simulations are already available for several domains3. A discussion on bias adjustment 
including assumptions and limitations can be found in Maraun et al. (2017) and the 
recent IPCC report (Doblas-Reyes et al., 2021). 
 

                                                      
1 https://cordex.org/publications/peer-reviewed-publications  
2 http://is-enes-data.github.io/CORDEX_adjust_drs.pdf  
3 https://cordex.org/data-access/bias-adjusted-rcm-data  
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RCM emulators – simulating RCM outputs using statistical methods. Emulators are a 
more recent hybrid approach where computationally-cheap statistical methods 
(including advanced machine learning such as neural networks) are used to learn the 
RCM downscaling function in order to be able to mimic high-resolution RCM outputs 
using coarser driving GCM predictors. The final aim of RCM emulators is to emulate at 
low cost partially or in full the spatio-temporal complexity of the original high-
resolution RCM for chosen variables of interest (e.g. to emulate convection-permitting 
nested to standard CORDEX simulations). With respect to standard ESD, this hybrid 
downscaling approach allows to work over areas where high-quality observations are 
not available and to take into account climate-dependent evolution of the large-
scale/small-scale relationship as learning in future simulations is possible. The 
approach furthermore allows to include feedbacks and nonlinear local responses to 
large-scale climatic changes as represented by RCMs or convection-permitting regional 
climate models (CPRCMs) which may not be easily derived from pure ESD approaches. 
Pioneer  work includes the emulation of daily surface temperature maps at 12 km over 
Europe (Doury et al., 2022).  Besides, ta first experimental protocol for emulator 
intercomparison has been defined in the framework of CORDEX FPS on convection4. So 
far, within CORDEX, there is no standardization of the naming for the RCM emulators 
or the files produced by emulators. This work will be needed in the coming years.  
 

Future Challenges 
 

1. Advances in ESD methodological aspects  
 
There are a number of methodological challenges for the different ESD approaches 
including the following. 
 
Generalization of the ESD methods to future climates. One of the main requirements 
for downscaling methods in the context of climate change is that the relationships 
established in current climate conditions generalize to future climates. Problems to be 
avoided are overfitting (in particular machine learning-based methods with a large 
number of parameters), or using predictors not carrying information on the climate 
change signal. Beside specific studies carried out in the framework of CORDEX to assess 
this problem for different approaches, there are some ongoing intercomparison 
experiments5 to test generalization in ensembles of ESD methods covering different 
approaches and techniques. Future coordinated activities will be required to gain 
comprehensive understanding on this challenge. This problem is particularly relevant 
in the case of bias adjustment methods and further research is needed to understand 
the effects on trends. 
 
Multivariate Aspects. Standard ESD approaches, e.g., using PCA, represent the local 
covarying behaviour imposed by large-scale predictors. However, residual spatial, 
temporal and multivariable dependence have to be explicitly modelled by a 
multivariate noise model (e.g. Maraun et al., 2015; Maraun and Widmann, 2018). 

                                                      
4 https://docs.google.com/document/d/1266C1tUgrXV-cwxvHy8mY1XRVSsPnXUBV9nUsf2q940  
5 http://www.value-cost.eu/validation/#Experiment_2a 
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Weather generators are designed to provide such models, and if driven by large-scale 
predictors these can serve as sophisticated PP downscaling methods (e.g., Maraun and 
Widmann, 2018; Doblas-Reyes et al., 2021). The underlying models comprise, for 
instance, simple Richardson-type weather generators, truncated Gaussian models, 
generalised linear models, spatial Poisson cluster models, random cascade models, and 
non-homogeneous hidden Markov models. Given the complex dependence between 
different locations and variables, these models may assume a complexity that is 
computationally challenging. A fundamentally limiting factor is the lack of a closed 
analytical multivariate distribution beyond the multivariate normal distribution. In 
particular, the dependence of extreme events (in different variables or at different 
locations) is methodologically challenging. Here, pair copula constructions, also called 
vine copulas, have shown potential for decomposing multivariate random variables 
(e.g., Aas et al., 2009). There are some approaches that may address some of these 
concerns, such as using the analog method or PCA to represent a group of stations in 
the predictands and downscaling the parameters of pdfs or aggregated statistics 
(Benestad, 2021). In the case of Bias Adjustment, different resampling techniques have 
been proposed to impose multivariate consistency (e.g. Vrac 2018). 
 

2. Advances in intercomparison/validation frameworks  
 
If ESD is to be used to inform decision-makers and for climate change adaptation, it is 
necessary to evaluate how the strategies and methods perform when applied to 
ensembles of GCMs. In addition to the traditional cross-validation, there is a need to 
assess their ability to reproduce historical trends and interannual variability, and check 
the stationarity assumption. The intercomparison of different approaches and 
techniques is fundamental for understanding and communicating the advantages and 
limitations of the different methods. There have been a few intercomparison 
experiences so far considering perfect predictors (Maraun et al., 2015; Vaittinada et al., 
2016).  
 
The VALUE initiative (Maraun 2015) developed a comprehensive intercomparison 
framework and produced results for over fifty ESD methods in perfect predictor 
conditions over Europe6.  Some ongoing activities are expanding the intercomparison 
over Europe and South America using GCM projections to analyze the uncertainty of 
the downscaled results7. Building on these experiences, an intercomparison 
experimental protocol is being developed for CMIP68. Other challenges are the use of 
weighted (constrained ensembles) and unweighted mean ensembles, and regional 
versus gridpoint downscaling. These topics were analyzed by Colorado-Ruiz et al., 
(2018) in a study in CORDEX-CAM (Central America, the Caribbean, and Mexico) where 
they evaluated two versions of the reliability ensemble averaging (REA; Giorgi and 
Mearns, 2002; Xu et al., 2010) technique at different spatial scales for weighted and 
unweighted GCM ensembles from CMIP5. Other approaches, such as pseudo-global 
warming or pseudo-observation use model (GCM or RCM) outputs for both predictors 

                                                      
6 See the IJOC special issue, https://rmets.onlinelibrary.wiley.com/toc/10970088/2019/39/9  
7 http://www.value-cost.eu/validation/#Experiment_2a  
8 https://docs.google.com/document/d/1det0PnLcAILQdOta7AJopADz0k3_QgX1hJ06OrhR1-w  
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and predicands to develop either dynamical or statistical models to analyze scientific 
problems (e.g. generalization capability of the dynamical or statistical methods to 
extrapolate results in climate change conditions; Erlandsen et al., 2020).  
 
Questions 

● How do we ensure/evaluate that the GCM predictors simulate credible future 
predictors? 

● How do we ensure/evaluate that the statistical model includes all relevant 
predictors to represent long-term changes in a realistic way? 

● How do we ensure/evaluate that the statistical model is credible under 
extrapolation to unobserved regions of the predictor space? 

● How do we take into account observational scarcity/uncertainty in the 
evaluation process and in the design of coordinated ESD experiments? 

● Can we produce suitable evaluation approaches targeted to specific aspects of 
bias adjustment (downscaling, temporal structure, etc.) ? 

● Can we produce comprehensive intercomparisons to understand and 
communicate the benefits and limitations of ESD approaches and techniques? 

● How do we measure the added value of downscaling in evaluation 
experiments?, what are the appropriate metrics taking into account the 
diversity of results/outputs?  

 

 
3. Machine Learning for ESD 
 
Machine learning techniques have been used and intercompared in downscaling 
applications since early work (von Storch and Zorita, 1999). Recently, this field has 
gained renewed attention boosted by major breakthroughs obtained with deep 
learning (DL) models (Reichstein et al. 2019). The advantage of DL resides in its ability 
to extract high-level feature representations in a hierarchical way due to its (deep) 
layered structure. In particular, convolutional neural networks (CNNs) have gained 
great attention in spatiotemporal problems due to their ability to learn spatial features 
from data. There have been some attempts to test the application of these techniques 
for ESD, including simple illustrative examples of super-resolution approaches to 
recover high-resolution (e.g. precipitation) fields from low-resolution counterparts 
with promising results, spatially consistent weather generators, perfect prognosis 
applications using different methods and architectures (Baño-Medina, 2021) and RCM 
emulators (Doury et al., 2022). These complex (in many cases off-the-shelf) models are 
usually seen as black boxes, generating distrust among the climate community, 
particularly when it comes to climate change problems. Recently, Reichstein et al. 
(2019) outlined this problem and encouraged research towards the understanding of 
deep neural networks in climate science.  
 
Questions 

● How do we ensure/evaluate that the automatization of predictor selection and 

feature extraction captures the right physical phenomena needed for 
downscaling? 



 

● How do we ensure/evaluate that  machine learning methods produce plausible 

projections generalizing to future climates?  
● Can we advance in the understanding of machine learning methods to gain 

interpretability of results?  
● Can we build RCM emulators suitable for certain tasks (e.g. filling-up temporal 

gaps in very-high-resolution CPRCM runs, filling-up the SCEN/GCM/RCM 
matrix, to better explore the natural variability related uncertainty, create large 
ensembles over areas poorly covered by RCM runs)? 

 

4. Distillation of actionable information 
 
A variety of climate projection sources are available providing information for regions 
including ensembles of GCMs – including recent high-resolution simulations –  further 
downscaled by dynamical and statistical downscaling thus generating different layers 
of information relevant for regions. Despite the increasing availability of these 
ensembles, the provision of actionable and defensible information about regional 
climate change is yet to be operationalized and involves many aspects on what 
information means, the role of context, the region to be analyzed, etc. (a 
comprehensive discussion can be found in the recent IPCC report; Doblas-Reyes et al., 
2021).  
Assessing the added value of the different approaches and techniques is of key 
importance to understand sensible distillation approaches for different uses and 
requirements. This is a challenge for the CORDEX community which would require close 
collaboration with all users of regional information. There are already ongoing co-
production experiences in the context of CORDEX (e.g. estimating intensity-duration-
frequency curves from daily data; Benestad 2021) but there has been a lack of 
coordination to develop and promote good practices. Also, besides the global model 
outputs, actionable information needs to include both dynamical and empirical-
statistical downscaling since they have different strengths and weaknesses and make 
use of information derived from different sources. 
 
The distillation challenge is one of the many aspects involved in the provision of 
regional information for society, so CORDEX will contribute to relevant initiatives 
focusing on a broader perspective, such as the Regional Information for Society (RIfS) 
WCRP core project.  
 
Questions 

● What is the influence of large-scale errors for the specific downscaling context 
(garbage in/garbage out)? 

● What is the influence of present-day biases in relevant processes and trends on 
the climate change signal (emergent constraints)? 

● How to reduce the complexity of climate change information (multi-model 
ensembles) by informed sub-sampling?  

● What climate information is used by stakeholders and decision-makers, how 
do they use it, and is its use consistent with the best science?  

● How can we estimate the added value of the different approaches providing 
regional information, and what are the appropriate metrics? 



 

● To what extent does multi-statistical downscaling model ensembles make 
sense (they may have different inherent limitations)? 

● How to understand/explain the differences or even contradictions between 
results from different ESD methods, and between ESD and RCMs and between 
ESD and GCMs? 

● How to identify and quantify vulnerability to sationarity? 
 

 

5. Data and Infrastructure 
 
One of the major successes of CORDEX has been its contribution in making available a 
set of coordinated dynamical downscaling simulations covering almost all land areas of 
the world, built mainly on the Earth System Grid Federation (ESGF) infrastructure. 
Standard CORDEX publishing protocols (e.g., format, variables, time periods and 
archival conventions) were established as part of the experimental framework and they 
have been widely used for storing and making available the RCM simulations across the 
different domains, thus facilitating data access to the vulnerability, impacts and 
Adaptation (VIACS) community. However, a similar protocol is yet to be completed for 
ESD. Some difficulties are the specific attributes for ESD methods and the lack of 
common simulation domains (most ESD results are in-house applications over specific 
national or subnational domains). ESD datasets would also require comprehensive 
metadata to describe the methodological approach and the underlying assumptions. 
Understanding the data and infrastructure requirements to support robust  ESD 
datasets through CORDEX coordinated experiment design is a major challenge for the 
future. 
 
Questions  

● How to extend the CORDEX DRS and archive specification to include ESD 
results? 

● Is ESGF a suitable home for ESD coordinated activities (e.g. national or 
subnational domains)? 

● How to best define and deploy comprehensive ESD metadata? 
● How to store downscaled results for large multi-model ensembles gridded over 

a selected region that makes it practically possible to distill information in a fast 
and flexible way?  
 

Suggestions 
The extension of the CORDEX Data Reference Syntax (DRS)9 and archive specification 
for ESD methods needs to be discussed further in the framework of CORDEX and other 
initiatives; a preliminary (but incomplete) protocol is already available to serve as the 
basis for this work. This protocol should also be suitable for bias adjustment 
approaches and align with ongoing efforts in CORDEX-Adjust10 and other initiatives, 
such as ISI-MIP which already stores and distributes ensembles of bias adjusted data. 
The regular ESGF grid domains (e.g. EUR-11i) could be used to archive those ESD 
simulations which cover a large portion of the domain. Specific domains could be used 

                                                      
9 https://cordex.org/experiment-guidelines/experiment-protocol-rcms/  
10 https://cordex.org/data-access/bias-adjusted-rcm-data  
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for special regions (or point-based) simulations (although minimum requirements 
should be defined for the suitability of archiving at ESGF). In terms of efficient data 
storage for statistical downscaling purposes, storage of model data at their effective 
resolution or storage of EOFs could be used to compress information also facilitating 
"climate downscaling" approaches. 
 

Last mile on bridging climate science with society needs 
 
The need to establish methods and tools to deliver information for climate change 
adaptation is the main concern of  other initiatives, in particular the WCRP RifS. CORDEX 
should be coordinated with them in order to be the foundation for developing the 
understanding of the downscaling added value and explaining the differences and 
contradictions within downscaling approaches and between downscaling and other 
approaches, so that a larger distillation community (which is necessarily in partnership 
with users and user contexts) can have confidence in the information derived from the 
CORDEX work in the broader activities of distillation. 
 
The challenge here is to establish an open collaboration framework with other related 
WCRP initiatives with a clear plan of who will do what, so future developments are 
efficient and coordinated. A central concern is to use the best available information in 
the right way, and communicate an understanding of what the numbers presented to 
decision-makers really represent. One example to the contrary is to rely on just one 
RCM realization.   
 
Most of these scientific challenges are broad and require inter and transdisciplinary 
collaboration of regional climate modelers with global climate modelers, statisticians 
(Benestad et al., 2017), communication experts, stakeholders and local experts.  
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