Publications 2023

  • Müller Sebastian K., et.al. (2023). The climate change response of alpine-mediterranean heavy precipitation events. Climate Dynamics. 62: 165-186; DOI: https://doi.org/10.1007/s00382-023-06901-9
  • Akperov et. al. (2023). Future projections of wind energy potentials in the Arctic for the 21st century under the RCP8.5 scenario from regional climate models (Arctic-CORDEX). Anthropocene. : 0; DOI: https://doi.org/10.1016/j.ancene.2023.100402
  • Al-Yaari. Amen et.al. (2023). Climate Variability and Glacier Evolution at Selected Sites Across the World: Past Trends and Future Projections. . : ; DOI: https://doi.org/10.1029/2023EF003618
  • Bangelesa et al. (2023). Projected changes in rainfall amount and distribution in the Democratic Republic of Congo – evidence from an ensemble of high-resolution climate simulations. Weather and Climate Extremes. 42: 100620; DOI: https://doi.org/10.1016/j.wace.2023.100620
  • Bettolli. Maria Laura et.al. (2023). Extreme precipitation events during dry years as depicted by the set of FPS-SESA convection-permitting simulations. VII Convection Permitting Climate Modelling Workshop, 29-31 August 2023, Bergen, Norway. : ; DOI: https://cpm2023.w.uib.no/files/2023/08/VIICPCM2023 _BoA_27Aug_v2.pdf
  • Brighenti. Tássia Mattos et.al. (2023). Assessing the Influence of a Bias Correction Method on Future Climate Scenarios Using SWAT as an Impact Model Indicator. Water. : 0; DOI: DOI: 10.3390/w15040750
  • Bukovsky, M. S., W. Gutowski, L. O. Mearns, D. Paquin, S. C. Pryor (2023). Climate Storylines. Meeting Summary. Bulletin of the American Meteorological Society. : 0; DOI: https://doi.org/10.1175/BAMS-D-22-0224.1
  • Changyong Park (2023). Uncertainty Assessment of Future Climate Change Using Bias-Corrected High-Resolution Multi-Regional Climate Model Datasets over East Asia. . : 0; DOI: https://doi.org/10.1007/s00382-023-07006-z
  • Chapman. Sarah et.al. (2023). Evaluation of dynamically downscaled CMIP6-CCAM models over Australia. Earth’s Future 11 . : 0; DOI: https://doi.org/10.1029/2023EF003548
  • Dziubanski. David and Franz. Kristie J. (2023). Projecting hydrologic change under land use and climate scenarios in an agricultural watershed using agent-based modeling. Frontiers in Water, 5. : 1020080; DOI: https://doi.org/10.3389/frwa.2023.1020080
  • Emmanouil. Stergios et.al. (2023). Exploring the future of rainfall extremes over conus: The effects of high emission climate change trajectories on the intensity and frequency of rare precipitation events. Earth’s Future, 11(4). : e2022EF003039; DOI: https://doi.org/10.1029/2022EF003039
  • Gonzalez Nicolas M. et.al (2023). Understanding tidal mixing at the Strait of Gibraltar: A high-resolution model approach. Progress in Oceanography . 212:102: 980; DOI:
  • Grose. Michael R. et.al. (2023). A CMIP6-based multi-model downscaling ensemble to underpin climate change services in Australia. Climate Services 30. : 0; DOI: https://doi.org/10.1016/j.cliser.2023.100368
  • Josefina Blázquez et. al. (2023). Temperature and precipitation biases in CORDEX RCM simulations over South America: possible origin and impacts on the regional climate change signal. Clim Dyn 61 . : 2907–2920; DOI: https://doi.org/10.1007/s00382-023-06727-5
  • JX Chung et.al. (2023). Future changes in mean and extreme precipitation over Peninsular Malaysia using CORDEX-SEA 5 km simulations. APN Science Bulletin 13. : 1; DOI:
  • Kim. Do‑Hyun et.al. (2023). Future projection of extreme precipitation over the Korean Peninsula under global warming levels of 1.5 °C and 2.0 °C, using large ensemble of RCMs in CORDEX‑East Asia Phase 2. . : 0; DOI: https://doi.org/10.1007/s00704-023-04570-6
  • Kim. Young-Hyun et.al. (2023). -Future changes in extreme heatwaves in terms of intensity and duration over the CORDEX-East Asia phase 2 domain using multi-GCM and multi-RCM chains. . : 0; DOI: https://doi.org/10.1088/1748-9326/acb727
  • Kim.Young-Hyun et.al. (2023). Concurrent daytime and nighttime heatwaves in the late 21 st century over the CORDEX-East Asia phase 2 domain using Multi-GCM and Multi-RCM Chains. . : 0; DOI: https://doi.org/10.1002/joc.8111
  • Lee. Donghyun et.al. (2023). Uncertainty analysis of future summer monsoon duration and area over East Asia using a multi-GCM/multi-RCM ensemble. . : 0; DOI: https://doi.org/10.1088/1748-9326/acd208
  • Liying Qiu et.al. (2023). Direct and indirect application of univariate and multivariate bias corrections on heat-stress indices based on multiple regional-climate-model simulations. . : 0; DOI: https://doi.org/10.5194/esd-14-507-2023
  • McCray. Christopher D. et.al. (2023). Changing Nature of High-Impact Snowfall Events in Eastern North America. Journal of Geophysical Research: Atmospheres. : 0; DOI: https://doi.org/10.1029/2023JD038804
  • Ntoumos. A et.al. (2023). Evaluation of WRF Model Boundary Layer Schemes in Simulating Temperature and Heat Extremes over the Middle East–North Africa (MENA) Region. Journal of Applied Meteorology and Climatology. : 0; DOI: https://journals.ametsoc.org/view/journals/apme/62/9/JAMC-D-22-0108.1.xml
  • Picard. Christopher J. et.al. (2023). Twenty-first century increases in total and extreme precipitation across the Northeastern USA. Climatic Change, 176(6). : 72; DOI: https://doi.org/10.1007/s10584-023-03545-w
  • Poddar. Shukla et. al. (2023). Assessing Australia’s future solar power ramps with climate projections. Scientific Reports 13. : 0; DOI: https://doi.org/10.1038/s41598-023-38566-z
  • Poddar. Shukla et.al. (2023). Changes in solar resource intermittency and reliability under Australia’s future warmer climate. Solar Energy. : ; DOI: https://doi.org/10.1016/j.solener.2023.112039
  • Porfírio da Rocha. Rosmeri et. al. (2023). Precipitation Diurnal Cycle Assessment in Convection-Permitting Simulations in Southeastern South America. Earth Syst Environ. : 0; DOI: https://doi.org/10.1007/s41748-023-00361-1
  • Porse. Erik et.al. (2023). Climate change risk and adaptation costs for stormwater management in California coastal parklands. Sustainable and Resilient Infrastructure, 8(3). : 293–306; DOI: https://doi.org/10.1080/23789689.2021.1996811
  • Ricard. Simon et.al. (2023). Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations. Hydrology and Earth System Sciences, 27(12). : 2375–2395; DOI: https://doi.org/10.5194/hess-27-2375-2023
  • Sakaguchi.Koichi et.al. (2023). Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM–MPAS variable-resolution model. Geoscientific Model Development, 16(10). : 3029–3081; DOI: https://doi.org/10.5194/gmd-16-3029-2023
  • Seo. Ga-Yeong et.al. (2023). Evaluation of Multi-RCM Ensembles for Simulating Spatiotemporal Variability of Asian Summer Monsoon Precipitation in the CORDEX-East Asia Phase 2 Domain. . : ; DOI: https://doi.org/10.1002/joc.8054
  • Torrez-Rodriguez. Limbert et. al. (2023). Evaluation of temperature and precipitation from CORDEX-CORE South America and Eta-RCM regional climate simulations over the complex terrain of Subtropical Chile. Clim Dyn 61. : 3195–3221; DOI: https://doi.org/10.1007/s00382-023-06730-w
  • Zare. Mohammad et.al. (2023). Assessment of meteorological and agricultural drought indices under climate change scenarios in the South Saskatchewan River Basin, Canada. Sustainability, 15(7). : 5907; DOI: https://doi.org/10.3390/su15075907
  • Zittis, George et. al. (2023). Maritime transport and regional climate change impacts in large EU islands and archipelagos. Euro-Mediterr J Environ . Integr 8: 441–454; DOI: