Publications 2022

  • Akperov et. al. (2022). Wind Energy Potential in the Arctic and Subarctic Regions and Its Projected Change in the 21st Century Based on Regional Climate Model Simulations. ussian Meteorology and Hydrology. : 0; DOI: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1697365&dswid=-7564
  • Anwar SA, MS Reboita, M Llopart (2022). On the sensitivity of the Amazon surface climate to two land‐surface hydrology schemes using a high‐resolution regional climate model (RegCM4). International Journal of Climatology 42 (4). : 2311-2327; DOI: https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.7367
  • Asselin, M. Leduc, D. Paquin, K. Winger, et.al. (2022). On the Intercontinental Transferability of Regional Climate Model Response to Severe Forestation. MDPI's Climate. : 0; DOI: https://doi.org/10.3390/cli10100138
  • Birch CE, Jackson LS, Finney DL, Marsham JM, Stratton RA, Tucker S, Senior CA, Keane RJ, Guichard F, Kendon EJ.,et al (2022). Future changes in heatwaves over Africa at the convection-permitting scale. Journal of Climate. : 0; DOI: https://doi.org/10.1175/JCLI-D-21-0790.1
  • Bresson et. al. (2022). Case study of a moisture intrusion over the Arctic with the ICOsahedral Non-hydrostatic (ICON) model: resolution dependence of its representation, Atmos.. Chem. Phys.. : 0; DOI: https://acp.copernicus.org/articles/22/173/2022/
  • Carter et.al. (2022). Variability in Antarctic surface climatology across regional climate models and reanalysis datasets. The Cryosphere. : 0; DOI: https://tc.copernicus.org/articles/16/3815/2022/
  • Changyong Park et.al. (2022). What determines future changes in photovoltaic potential over East Asia?. Renewable Energy. : 0; DOI: https://doi.org/10.1016/j.renene.2021.12.029
  • Changyong Park et.al. (2022). Future Projections of Precipitation using Bias–Corrected High–Resolution Regional Climate Models for Sub–Regions with Homogeneous Characteristics in South Korea. Asia-Pacific Journal of Atmospheric Sciences. : 0; DOI: https://doi.org/10.1007/s13143-022-00292-3
  • Chapman S, Bacon J, Birch CE, Pope E, Marsham JH, Msemo H, Nkonde E, Sinachikupo K, Vanya C.,et al (2022). Climate change impacts on extreme rainfall in Eastern Africa in a convection permitting climate model.. Journal of Climate. : 0; DOI:
  • Costoya X, et.al. (2022). Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula. Renewable and Sustainable Energy Reviews. 157: 112037; DOI: https://doi.org/10.1016/j.rser.2021.112037
  • Crespo N. M., Reboita M. S. et.al. (2022). Assessment of the RegCM4-CORDEX-CORE performance in simulating cyclones affecting the western coast of South America. Climate Dynamics. : 1-19; DOI: https://doi.org/10.1007/s00382-022-06419-6
  • Di Virgilio G et.al. (2022). Selecting CMIP6 GCMs for CORDEX Dynamical Downscaling: Model Performance, Independence, and Climate Change Signals.. Earth’s Future 10(4)e2021EF002625. : 0; DOI: https://doi.org/10.1029/2021EF002625
  • Diez-Sierra et.al. (2022). The worldwide C3S CORDEX grand ensemble: A major contribution to assess regional climate change in the IPCC AR6 Atlas. Bull. Amer. Meteor. Soc. : 0; DOI: https://journals.ametsoc.org/view/journals/bams/103/12/BAMS-D-22-0111.1.xml
  • Donghyun Lee et.al. (2022). Enhanced Role of Convection in Future Hourly Rainfall Extremes Over South Korea. Geophysical Research Letter. : 0; DOI: https://doi.org/10.1029/2022GL099727
  • Fredolin Tangang, Jing Xiang Chung et.al. (2022). CORDEX Southeast Asia: Providing Regional Climate Change Information for Enabling Adaptation. Extreme Natural Events. Springer, Singapore. : 0; DOI: https://doi.org/10.1007/978-981-19-2511-5_1
  • Gilbert et.al. (2022). A 20‐Year Study of Melt Processes Over Larsen C Ice Shelf Using a High‐Resolution Regional Atmospheric Model: 1. Model Configuration and Validation. Journal of Geophysical Research. : 0; DOI: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021JD034766
  • Gilbert et.al. (2022). A 20‐Year Study of Melt Processes Over Larsen C Ice Shelf Using a High‐Resolution Regional Atmospheric Model: 2. Drivers of Surface Melting. Journal of Geophysical Research. : 0; DOI: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021JD036012
  • Guzmán Zabalaga Decker, Rosmeri Porfírio da Rocha, Marta Pereira LLopart, Michelle Simões Reboita (2022). Identificação de Regiões Homogêneas de Precipitação e Projeções Climáticas com o RegCM4 no Altiplano Andino (in Portuguese). Revista Brasileira de Geografia Física. : 0; DOI: https://www.researchgate.net/publication/366321394
  • Hansen et.al. (2022). Brief communication: Impact of common ice mask in surface mass balance estimates over the Antarctic ice sheet. The Cryosphere. : 0; DOI: https://tc.copernicus.org/articles/16/711/2022/
  • Heinemann et.al. (2022). A three-years climatology of the wind field structure at Cape Baranova (Severnaya Zemlya, Siberia) from SODAR observations and high-resolution regional climate model simulations during YOPP. Atmosphere. : 0; DOI: https://www.mdpi.com/2073-4433/13/6/957
  • Heinemann et.al. (2022). Evaluation of simulations of near-surface variables using the regional climate model CCLM for the MOSAiC winter period. Elem. Sci. Anth.. : 0; DOI: https://online.ucpress.edu/elementa/article/10/1/00033/190270/Evaluation-of-simulations-of-near-surface
  • Hoang-Cong, H. ., Ngo-Duc, T., Nguyen-Thi et.al. (2022). A high-resolution climate experiment over part of Vietnam and the Lower Mekong Basin: performance evaluation and projection for rainfall. Vietnam Journal of Earth Sciences, 44(1), . : 92–108; DOI: https://vjs.ac.vn/index.php/jse/article/view/16942
  • J Van de Walle, O Brousse, L Arnalsteen, C Brimicombe, D Byarugaba, M Demuzere, E Jjemba, S Lwasa, H Misiani7, G Nsangi, F Soetewey, H Sseviiri, W Thiery, R Vanhaeren, B F Zaitchik and N P M van Lipzi (2022). Lack of vegetation exacerbates exposure to dangerous heat in dense settlements in a tropical African city. Env. Res. Lett.. : 0; DOI: https://iopscience.iop.org/article/10.1088/1748-9326/ac47c3
  • Ji F, Nishant N, Evans JP, Di Virgilio G, et.al. (2022). Introducing NARCliM1.5: Evaluation and projection of climate extremes for southeast Australia. Weather and Climate Extremes, 38: 100526. : 0; DOI: https://doi.org/10.1016/j.wace.2022.100526.
  • Ji Fei, Nishant N, Evans JP, Di Luca A, et.al. (2022). Rapid Warming in the Australian Alps from Observation and NARCliM Simulations. Atmosphere, 13(10). : 0; DOI:
  • Juzbašić ,Ana et.al. (2022). Changes in heat stress considering temperature, humidity, and wind over East Asia under RCP8.5 and SSP5-8.5 scenarios. International Journal of Climatology. : 0; DOI: https://doi.org/10.1002/joc.7636
  • Kittel et.al. (2022). Clouds drive differences in future surface melt over the Antarctic ice shelves. The Cryosphere. : 0; DOI: https://tc.copernicus.org/articles/16/2655/2022/
  • Lagos-Zúñiga Miguel et.al. (2022). Extreme indices of temperature and precipitation in South America: trends and intercomparison of regional climate models. Climate Dynamics. : 0; DOI: https://doi.org/10.1007/s00382-022-06598-2
  • Landgren et. al. (2022). Multi-decadal convection-permitting climate simulation over Svalbard and its benefit for assessing the future of cultural heritage sites. EMS Annual Meeting Bonn 2022. : 0; DOI: https://acp.copernicus.org/articles/22/7287/2022/acp-22-7287-2022-discussion.html
  • Lee et.al. (2022). Towards effective collaborations between regional climate modelling and impacts relevant to modelling studies in Polar Regions. Bull. Amer. Meteor. Soc. : 0; DOI: https://journals.ametsoc.org/view/journals/bams/103/8/BAMS-D-22-0102.1.xml
  • Lerber von et. al. (2022). Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic, Atm.. Chem. Phys.. : 0; DOI: https://acp.copernicus.org/articles/22/7287/2022/acp-22-7287-2022-discussion.html
  • Lipzig Nicole P. M. et.al. (2022). Representation of precipitation and top-of-atmosphere radiation in a multi-model convection-permitting ensemble for the Lake Victoria Basin (East-Africa). Climate Dynamics. 2022: 0; DOI: https://doi.org/10.1007/s00382-022-06541-5
  • Marrafon VH, MS Reboita, RP da Rocha, EM de Jesus (2022). Classificação dos tipos de ciclones sobre o Oceano Atlântico Sul em projeções com o RegCM4 E MCGs (in Portuguese). Revista Brasileira de Climatologia 30. : 1-25; DOI: https://ojs.ufgd.edu.br/index.php/rbclima/article/view/14603
  • McCray, C. D., D. Paquin, J. M. Thériault, É. Bresson (2022). A multi-algorithm analysis of projected changes to freezing rain over North America in an ensemble of regional climate model simulations.. Journal of Geophysical Research - Atmospheres. : 0; DOI: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JD036935
  • McCray, D. C., J. M. Thériault, D. Paquin, É. Bresson (2022). Quantifying the impact of precipitation-type algorithm selection on the representation of freezing rain in an ensemble of regional climate model simulations. Journal of Applied Meteorology and Climatology. : 0; DOI: https://journals.ametsoc.org/view/journals/apme/aop/JAMC-D-21-0202.1/JAMC-D-21-0202.1.xml
  • Müller Sebastian K. et.al. (2022). Correction to: Evaluation of Alpine-Mediterranean precipitation events in convection-permitting regional climate models using a set of tracking algorithms. Climate Dynamics. 61: 939–957; DOI: https://doi.org/10.1007/s00382-022-06608-3
  • Nakulopa, Faluku Vanderkelen et.al. (2022). Evaluation of High-Resolution Precipitation Products over the Rwenzori Mountains (Uganda). j. Hydrometeor. : 0; DOI: https://doi.org/10.1175/JHM-D-21-0106.1
  • Narvaez G., Giraldo L. F., Bressan M., Pantoja A. (2022). The impact of climate change on photovoltaic power potential in Southwestern Colombia. Heliyon. 8: e11122; DOI: https://doi.org/10.1016/j.heliyon.2022.e11122
  • Natália Machado Crespo Natália et.al. (2022). Western South Atlantic Climate Experiment (WeSACEx): extreme winds and waves over the Southeastern Brazilian sedimentary basins. Climate Dynamics. : 0; DOI: https://doi.org/10.1007/s00382-022-06340-y
  • Nguyen, P-L., M. Bador et.al. (2022). More intense daily precipitation in CORDEX-SEA regional climate models than their forcing global climate models over Southeast Asia. International Journal of Climatology, 42( 12). : 6537– 6561; DOI: https://doi.org/10.1002/joc.7619
  • Olmo ME, Weber T, Teichmann C, Bettolli ML. (2022). Compound events in South America using the CORDEXCORE ensemble: Current climate conditions and future projections in a global warming scenario. Journal of Geophysical Research: Atmospheres. : 0; DOI: https://doi.org/10.1029/2022JD037708
  • Olmo, ME, Balmaceda-Huarte, R,Bettolli, ML (2022). Multi-model ensemble of statistically downscaled GCMs over southeastern South America: historical evaluation and future projections of daily precipitation with focus on extremes. Climate Dynamics. : 0; DOI: https://link.springer.com/article/10.1007/s00382-022-06236-x
  • Orr et.al. (2022). Characteristics of surface “melt potential” over Antarctic ice shelves based on regional atmospheric model simulations of summer air temperature extremes from 1979/80 to 2018/19. Journal of Climate . : 0; DOI:
  • Phuong Nguyen-Ngoc-Bich, Tan Phan-Van et.al, (2022). Projected future changes in drought characteristics over Southeast Asia. Vietnam Journal of Earth Sciences, 44(1). : 127-143; DOI: https://doi.org/10.15625/2615-9783/16974
  • Reader,MC and Steiner,N (2022). Atmospheric trends over the Arctic Ocean in simulations from the Coordinated Regional Downscaling Experiment (CORDEX) and their driving GCMs. Climate Dynamics. : 0; DOI: https://link.springer.com/article/10.1007/s00382-022-06274-5
  • Reboita Michelle Simões et.al. (2022). Future projections of extreme precipitation climate indices over South America based on CORDEX-CORE multimodel ensemble Atmosphere. Atmosphere. : 0; DOI: https://doi.org/10.3390/atmos13091463
  • Reboita MS, da Rocha RP, Souza CA de, Baldoni TC, Silva PLL da S, Ferreira GWS (2022). Future Projections of Extreme Precipitation Climate Indices over South America Based on CORDEX-CORE Multimodel Ensemble. Atmosphere. Multidisciplinary Digital Publishing Institute, 13(9). : 0; DOI: https://doi.org/10.3390/atmos13091463.
  • Rowell, D.P. and Berthou, S. ,et al (2022). Fine-scale climate projections: What additional fixed spatial detail is provided by a convection-permitting model?. J. Climate.. : 0; DOI: https://doi.org/10.1175/JCLI-D-22-0009.1
  • Sheau Tieh Ngai, Liew Juneng et.al. (2022). Projected mean and extreme precipitation based on bias-corrected simulation outputs of CORDEX Southeast Asia. 0. : 0; DOI:
  • Silva Patrícia S, et.al. (2022). Heatwaves and fire in Pantanal: Historical and future perspectives from CORDEX-CORE. Journal of Environmental Management. 323: 0; DOI: https://doi.org/10.1016/j.jenvman.2022.116193
  • Vázquez‑Patiño Angel, Esteban Samaniego, Lenin Campozano, Alex Avilés (2022). Efectiveness of causality‑based predictor selection for statistical downscaling: a case study of rainfall in an Ecuadorian Andes basin. Theoretical and Applied Climatology. : 0; DOI: https://doi.org/10.1007/s00704-022-04205-2
  • Viceto et al. (2022). Atmospheric rivers and associated precipitation patterns during the ACLOUD/PASCAL campaigns near Svalbard (May-June 2017): case studies using observations, reanalyses, and a regional climate model, Atm.. Chem. Phys.. : 0; DOI: https://acp.copernicus.org/articles/22/441/2022/
  • Vu, D.Q., Q.V. Doan et.al. (2022). Offshore wind resource in the context of global climate change: a case study of a tropical sea. Applied Energy, 308, 118369, . : 0; DOI: https://doi.org/10.1016/j.apenergy.2021.118369
  • Woodhams BJ, Barrett PA, Marsham JH, Birch CE, Bain CL, Fletcher JK, Hartley AJ, Webster S, Mangeni S.,et al (2022). Aircraft observations of the lake‐land breeze circulation over Lake Victoria. Quarterly Journal of the Royal Meteorological Society.. : 0; DOI: