Generic selectors
Exact matches only
Search in title
Search in content
Search in posts
Search in pages

Publications 2020

  • Almazroui, M. (2020). Summer maximum temperature over the gulf cooperation council states in the twenty-first century: multimodel simulations overview.. Arabian Journal of Geosciences. 13: 477; DOI: https://doi.org/10.1007/s12517-020-05537-x
  • Ashfaq M. et. al (2020). Robust late twenty-first century shift in the regional monsoons inRegCM-CORDEX simulations. Climate Dynamics. : .; DOI: https://doi.org/10.1007/s00382-020-05306-2
  • Blázquez, J., Silvina, A.S. (2020). Multiscale precipitation variability and extremes over South America: analysis of future changes from a set of CORDEX regional climate model simulations. Climate Dynamics . 55: 2089-2106; DOI: https://doi.org/10.1007/s00382-020-05370-8
  • Boé J., et.al. (2020). Large differences in Summer climate change over Europe as projected by global and regional climate models: causes and consequences.. Climate Dynamics. 54: 2981-3002; DOI: https://doi.org/10.1007/s00382-020-05153-1
  • Boé, J., Somot, S., Corre, L. and Nabat, P. (2020). Large discrepancies in summer climate change over Europe as projected by global and regional climate models : causes and consequences. Climate Dynamics . 54: 2981-3002; DOI: https://doi.org/10.1007/s00382-020-05153-1
  • Breil, M., et.al. (2020). The opposing effects of reforestation and afforestation on the diurnal temperature cycle at the surface and in the lowest atmospheric model level in the European summer.. Journal of Climate. 33: 9159–9179; DOI: https://doi.org/10.1175/JCLI-D-19-0624.1
  • Bukovsky, M. S., and Mearns, L. O. (2020). Regional climate change projections from NA-CORDEX and their relation to climate sensitivity.. Clim. Change . 162: 645-665; DOI: https://doi.org/10.1007/s10584-020-02835-x
  • Casanueva, A., et. al. (2020). Escalating environmental summer heat exposure - a future threat for the European workforce. Reg Environ Change . 20: 40; DOI: https://doi.org/10.1007/s10113-020-01625-6
  • Casanueva, A., et.al. (2020). Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch. Atmos. Sci. Lett. e978: -; DOI: https://doi.org/10.1002/asl.978
  • Cavazos, T., et.al. (2020). Climatic trends and regional climate models intercomparison over the CORDEX-CAM (Central America, Caribbean and Mexico) domain. Int. J. Climatol. 40(3): 1396-1420; DOI: https://doi.org/10.1002/joc.6276
  • Chen, L. (2020). Impacts of climate change on wind resources over North America based on NA-CORDEX.. Renew. Energy . 153: 1428-1438; DOI: https://doi.org/10.1016/j.renene.2020.02.090
  • Chen, L. (2020). Uncertainties in solar radiation assessment in the United States using climate models. Clim. Dyn. 56: 665–678; DOI: https://doi.org/10.1007/s00382-020-05498-7
  • Christensen, O.B., Kjellström, E. (2020). Partitioning uncertainty components of climate change in a large ensemble of European regional climate model projections. Climate Dynamics . 54: 4293–4308; DOI: https://doi.org/10.1007/s00382-020-05229-y
  • Ciarlo JM, et.al. (2020). A new spatially distributed Added Value Index for Regional Climate Models: the EUROCORDEX and the CORDEX-CORE highest resolution ensembles. Climate Dynamics . 55: x; DOI: https://doi.org/10.1007/s00382-020-05400-5
  • Constantinidou, K., Hadjinicolaou, P., Zittis, G., & Lelieveld, J. (2020). Sensitivity of simulated climate over the MENA region related to different land surface schemes in the WRF model.. Theoretical and Applied Climatology . 141: 1431-1449; DOI: https://doi.org/10.1007/s00704-020-03258-5
  • Constantinidou, K., Hadjinicolaou, P., Zittis, G., & Lelieveld, J. (2020). Performance of Land Surface Schemes in the WRF Model for Climate Simulations over the MENA CORDEX Domain.. Earth Systems and Environment. 4: 647–665; DOI: https://doi.org/10.1007/s41748-020-00187-1
  • Coppola, E., et.al. (2020). A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics . 55: 3-34; DOI: https://doi.org/10.1007/s00382-018-4521-8
  • Costoya, X., DeCastro, M., Carvalho, D., and Gómez-Gesteira, M. (2020). On the suitability of offshore wind energy resource in the United States of America for the 21st century. Appl. Energy . 262: 114537; DOI: https://doi.org/10.1016/j.apenergy.2020.114537
  • Davin E., et.al. (2020). Biogeophysical impacts of forestation in Europe: first results from the LUCAS (Land Use and Climate Across Scales) regional climate model intercomparison. -. -: -; DOI: https://www.earth-syst-dynam.net/11/183/2020/
  • de la Vara, A.; Gutiérrez, C., González-Alemán, J.J., Gaertner, M.Á. (2020). Intercomparison Study of the Impact of Climate Change on Renewable Energy Indicators on the Mediterranean Islands.. Atmosphere. 11: 1036; DOI: https://doi.org/10.3390/atmos11101036
  • Demory M.-E., Berthou S., et al. (2020). European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev.. 13: 5485–5506; DOI: https://doi.org/10.5194/gmd-13-5485-2020
  • Di Virgilio G., et.al. (2020). Realised added value in dynamical downscaling of Australian climate change.. Climate Dynamics. 54: 4675–4692; DOI: https://doi.org/10.1007/s00382-020-05250-1
  • Dosio A., et. al. (2020). A tale of two futures: contrasting scenarios of future precipitation for West Africa from an ensemble of regional climate models. Environmental Research Letters. 15: .; DOI: https://doi.org/10.1088/1748-9326/ab7fde
  • Driouech, F., et.al. (2020). Assessing Future Changes of Climate Extreme Events in the CORDEX-MENA Region Using Regional Climate Model ALADIN-Climate. Earth Systems and Environment. 4(3): 477-492; DOI: https://doi.org/10.1007/s41748-020-00169-3
  • Drobinski, P. et.al. (2020). How warmer and drier will the Mediterranean region be at the end of the twenty-first century?. Reg Environ Change . 20: 1-12; DOI: https://doi.org/10.1007/s10113-020-01659-w
  • FJ de Medeiros, CP de Oliveira, CMS e Silva, (2020). Numerical simulation of the circulation and tropical teleconnection mechanisms of a severe drought event (2012-2016) in Northeastern Brazil. Climate Dynamics. 54: 4043–4057; DOI: https://doi.org/10.1007/s00382-020-05213-6
  • García-García, A. et.al. (2020). Land surface model influence on the simulated climatologies of temperature and precipitation extremes in the WRF v3.9 model over North America. Geosci. Model Dev. 13: 5345-5366; DOI: https://doi.org/10.5194/gmd-13-5345-2020
  • Glazer, R.H., et.al. (2020). Projected changes to severe thunderstorm environments as a result of twenty-first century warming from RegCM CORDEX-CORE simulations. Climate Dynamics . n/a: 1-19; DOI: https://doi.org/10.1007/s00382-020-05439-4
  • Gunathilake et al. (2020). Evaluation of future climate and potential impact on streamflow in the Upper Nan River basin of Northern Thailand. Advances In Meteorology. 2020: 1-15; DOI: https://doi.org/10.1155/2020/8881118
  • Gutiérrez C., et.al. (2020). Future evolution of surface solar radiation and photovoltaic potential in Europe: investigating the role of aerosols.. Environ. Res. Lett.. 15: 34-35; DOI: https://doi.org/10.1088/1748-9326/ab6666
  • Gutierrez, C., et.al. (2020). Future evolution of surface solar radiation and photovoltaic potential in Europe : investigating the role of aerosols. Environ. Res. Lett.. 15: 034035; DOI: https://doi.org/10.1088/1748-9326/ab6666
  • Gutowski, W.J., and F. Giorgi, (2020). Coordination of regional downscaling. Oxford Research Encyclopedia of Climate Science. -: -; DOI: https://doi.org/10.1093/acrefore/9780190228620.013.658
  • Gutowski, W.J., et.al. (2020). The ongoing need for high-resolution regional climate models: Process understanding and stakeholder information. Bulletin of the American Meteorological Society. 101(5): E664–E683; DOI: https://doi.org/10.1175/BAMS-D-19-0113.1
  • Hernández-Díaz, L., et.al. (2020). Effect of empirical correction of sea-surface temperature biases on the CRCM5-simulated climate and projected climate changes over North America.. Clim. Dyn. 53: 453-476; DOI: https://doi.org/10.1007/s00382-018-4596-2
  • Herrera S., Soares P. M. M., Cardoso R. M., Gutiérrez J. M. (2020). Evaluation of the EURO‐CORDEX Regional Climate Models Over the Iberian Peninsula: Observational Uncertainty Analysis. Journal of Geophysical Research: Atmospheres. Volume 125, Issue 12: -; DOI: https://doi.org/10.1029/2020JD032880
  • Jacob, D., et.al. (2020). Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community.. Reg Environ Change . 20: 51; DOI: https://doi.org/10.1007/s10113-020-01606-9
  • Lavin-Gullon A., Fernandez J., Bastin S., Cardoso R.M et al. (2020). Internal variability versus multi‐physics uncertainty in a regional climate model. International Journal of Climatology. : -; DOI: https://doi.org/10.1002/joc.6717
  • Legasa M. N., et. al. (2020). Assessing Multidomain Overlaps and Grand Ensemble Generation in CORDEX Regional Projections. Geophysical Research Letters. Volume 47, Issue 4: .; DOI: https://doi.org/10.1029/2019GL086799
  • Llopart, M., et.al. (2020). Assessing changes in the atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains.. Climate Dynamics. n/a: 1-14; DOI: https://doi.org/10.1007/s00382-020-05539-1
  • Llopart, M., Reboita, M., & da Rocha, R. P (2020). Assessment of multi-model climate projections of water resources over South America CORDEX domain. Climate Dynamics . 54(1-2): 99-116; DOI: https://doi.org/10.1007/s00382-019-04990-z
  • Lucas‐Picher, P., et.al. (2020). Will Evolving Climate Conditions Increase the Risk of Floods of the Large U.S.‐Canada Transboundary Richelieu River Basin?. JAWRA J. Am. Water Resour. Assoc.. 57: 1752-1688; DOI: https://doi.org/10.1111/1752-1688.12891.
  • Molina, M.O., Sánchez, E., Gutierrez, C. (2020). Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble.. Sci Rep. 10: 8801; DOI: https://doi.org/10.1038/s41598-020-65663-0
  • Nabat, P., et.al. (2020). Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region. Atmos. Chem. Phys.. 20: 8315-8349; DOI: https://doi.org/10.5194/acp-20-8315-2020
  • Neri, A., Villarini, G., and Napolitano, F (2020). Statistically-based projected changes in the frequency of flood events across the U.S. Midwest.. J. Hydrol. 584: 124314; DOI: https://doi.org/10.1016/j.jhydrol.2019.124314
  • Ngai ST., et.al. (2020). Future projections of Malaysia daily precipitation characteristics using bias correction technique.. Atmospheric Research. 240: 104926; DOI: https://doi.org/10.1016/j.atmosres.2020.104926
  • Ngai ST., et.al. (2020). Extreme Rainfall Projections for Malaysia at the End of 21st Century Using the High Resolution Non-Hydrostatic Regional Climate Model (NHRCM).. SOLA. 16: 132-139; DOI: https://doi.org/10.2151/sola.2020-023
  • Nguyen-Thi T., et. al. (2020). Climate analogue and future appearance of novel climate in Southeast Asia. Int. J. Climatol. : 1-18; DOI: https://doi.org/10.1002/joc.6693
  • Ntoumos, A., Hadjinicolaou, P., Zittis, G., & Lelieveld, J. (2020). Updated Assessment of Temperature Extremes over the Middle East–North Africa (MENA) Region from Observational and CMIP5 Data.. Atmosphere. 11: 813; DOI: https://doi.org/10.3390/atmos11080813
  • Parras-Berrocal, IM. et.al. (2020). The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere-ocean model. Ocean Science. 16: 743-765; DOI: https://doi.org/10.5194/os-16-743-2020
  • Pessacg, N., F. Silvia, S. Solman, P. Miguel (2020). Climate change in northern Patagonia: critical decrease in water resources.. Theoretical and Applied Climatology . 140: 807–822; DOI: https://doi.org/10.1007/s00704-020-03104-8
  • Pessag N., Silvia, F., Solman, S., Miguel, P (2020). Climate change in northern Patagonia: critical decrease in water resources.. Theoretical and Applied Climatology . 140: 807-822; DOI: https://doi.org/10.1007/s00704-020-03104-8
  • Reboita M. S., et. al. (2020). Future changes in the wintertime cyclonic activity over theCORDEX-CORE southern hemisphere domains in a multi-model approach. Climate Dynamics. : .; DOI: https://doi.org/10.1007/s00382-020-05317-z
  • Russo, E., et.al. (2020). Exploring the parameter space of the COSMO-CLM v5. 0 regional climate model for the Central Asia CORDEX domain.. Geoscientific Model Development. 13: 5779-5797; DOI: https://gmd.copernicus.org/articles/13/5779/2020/
  • Soto-Navarro, J. + et.al. (2020). Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble.. Climate Dynamics . 54: 2135-2165; DOI: https://doi.org/10.1007/s00382-019-05105-4
  • Spinoni J., et. al. (2020). Future global meteorological drought hotspots. A study based on CORDEX data. Journal of Climate. : 33(9), 3635–3661; DOI: https://doi.org/10.1175/JCLI-D-19-0084.1
  • Spinoni, J. et.al. (2020). Future global meteorological drought hot spots: a study based on CORDEX data.. Journal of Climate. 33: 3635-3661; DOI: https://doi.org/10.1175/JCLI-D-19-0084.1
  • Supari., et.al. (2020). Multi-model projections of precipitation extremes in Southeast Asia based on CORDEX-Southeast Asia simulations. Environmental Research, Environmental Research . 184: -; DOI: https://doi.org/10.1016/j.envres.2020.109350
  • Tangang F., et. al. (2020). Projected future changes in rainfall in Southeast Asia based on CORDEX-SEA multi-model simulations. Climate Dynamics. : .; DOI: https://doi.org/10.1007/s00382-020-05322-2
  • Thierry N. Taguela, D. A. Vondou, W. Moufouma‐Okia, T. C. Fotso‐Nguemo et al. (2020). CORDEX Multi‐RCM Hindcast Over Central Africa: Evaluation Within Observational Uncertainty. Journal of Geophysical Research: Atmospheres. 125: e2019JD031607; DOI: https://doi.org/10.1029/2019JD031607
  • Torma, CZ; Kis, A; Pongracz, R (2020). Evaluation of EURO-CORDEX and Med-CORDEX precipitation simulations for the Carpathian Region: Bias corrected data and projected changes.. IDOJARAS/QUARTERLY JOURNAL OF THE HUNGARIAN METEOROLOGICAL SERVICE. 124: 25-46; DOI: https://doi.org/10.28974/idojaras.2020.1.2