Generic selectors
Exact matches only
Search in title
Search in content
Search in posts
Search in pages

Publications 2020

  • Ahn, J-B., et.al. (2020). Climatic Yield Potential of Japonica-type rice in the Korean Peninsula under RCP scenarios using the ensemble of multi-GCM and multi-RCM chains. International Journal of Climatology. 41: E1287-E1302; DOI: https://doi.org/10.1002/joc.6767
  • Ajayi V.O., Ilori O.W., (2020). Projected drought events over West Africa using RCA4 regional climate model. Earth Systems and Environment. 4/2: 329-348; DOI: https://doi.org/10.1007/s41748-020-00153-x
  • Almazroui, M. (2020). Summer maximum temperature over the gulf cooperation council states in the twenty-first century: multimodel simulations overview.. Arabian Journal of Geosciences. 13: 477; DOI: https://doi.org/10.1007/s12517-020-05537-x
  • Ashfaq M. et. al (2020). Robust late twenty-first century shift in the regional monsoons inRegCM-CORDEX simulations. Climate Dynamics. : .; DOI: https://doi.org/10.1007/s00382-020-05306-2
  • Bettolli ML, et.al. (2020). The CORDEX Flagship Pilot Study in Southeastern South America: A comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events. Climate Dynamics. 56: 1589-1608; DOI: https://doi.org/10.1007/s00382-020-05549-z
  • Blázquez, J., Silvina, A.S. (2020). Multiscale precipitation variability and extremes over South America: analysis of future changes from a set of CORDEX regional climate model simulations. Climate Dynamics . 55: 2089-2106; DOI: https://doi.org/10.1007/s00382-020-05370-8
  • Boé J., et.al. (2020). Large differences in Summer climate change over Europe as projected by global and regional climate models: causes and consequences.. Climate Dynamics. 54: 2981-3002; DOI: https://doi.org/10.1007/s00382-020-05153-1
  • Boé, J., Somot, S., Corre, L. and Nabat, P. (2020). Large discrepancies in summer climate change over Europe as projected by global and regional climate models : causes and consequences. Climate Dynamics . 54: 2981-3002; DOI: https://doi.org/10.1007/s00382-020-05153-1
  • Breil, M., et.al. (2020). The opposing effects of reforestation and afforestation on the diurnal temperature cycle at the surface and in the lowest atmospheric model level in the European summer.. Journal of Climate. 33: 9159–9179; DOI: https://doi.org/10.1175/JCLI-D-19-0624.1
  • Builes-Jaramillo, A., Pántano, V. (2020). Comparison of spatial and temporal performance of two Regional Climate Models in the Amazon and La Plata river basins. Atmospheric Research. 250: 105413; DOI: https://doi.org/10.1016/j.atmosres.2020.105413
  • Bukovsky, M. S., and Mearns, L. O. (2020). Regional climate change projections from NA-CORDEX and their relation to climate sensitivity.. Clim. Change . 162: 645-665; DOI: https://doi.org/10.1007/s10584-020-02835-x
  • Casanueva, A., et. al. (2020). Escalating environmental summer heat exposure - a future threat for the European workforce. Reg Environ Change . 20: 40; DOI: https://doi.org/10.1007/s10113-020-01625-6
  • Casanueva, A., et.al. (2020). Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch. Atmos. Sci. Lett. e978: -; DOI: https://doi.org/10.1002/asl.978
  • Cavazos, T., et.al. (2020). Climatic trends and regional climate models intercomparison over the CORDEX-CAM (Central America, Caribbean and Mexico) domain. Int. J. Climatol. 40(3): 1396-1420; DOI: https://doi.org/10.1002/joc.6276
  • Chen, L. (2020). Impacts of climate change on wind resources over North America based on NA-CORDEX.. Renew. Energy . 153: 1428-1438; DOI: https://doi.org/10.1016/j.renene.2020.02.090
  • Chen, L. (2020). Uncertainties in solar radiation assessment in the United States using climate models. Clim. Dyn. 56: 665–678; DOI: https://doi.org/10.1007/s00382-020-05498-7
  • Christensen, O.B., Kjellström, E. (2020). Partitioning uncertainty components of climate change in a large ensemble of European regional climate model projections. Climate Dynamics . 54: 4293–4308; DOI: https://doi.org/10.1007/s00382-020-05229-y
  • Ciarlo JM, et.al. (2020). A new spatially distributed Added Value Index for Regional Climate Models: the EUROCORDEX and the CORDEX-CORE highest resolution ensembles. Climate Dynamics . 55: x; DOI: https://doi.org/10.1007/s00382-020-05400-5
  • Constantinidou, K., Hadjinicolaou, P., Zittis, G., & Lelieveld, J. (2020). Sensitivity of simulated climate over the MENA region related to different land surface schemes in the WRF model.. Theoretical and Applied Climatology . 141: 1431-1449; DOI: https://doi.org/10.1007/s00704-020-03258-5
  • Constantinidou, K., Hadjinicolaou, P., Zittis, G., & Lelieveld, J. (2020). Performance of Land Surface Schemes in the WRF Model for Climate Simulations over the MENA CORDEX Domain.. Earth Systems and Environment. 4: 647–665; DOI: https://doi.org/10.1007/s41748-020-00187-1
  • Coppola, E., et.al. (2020). A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics . 55: 3-34; DOI: https://doi.org/10.1007/s00382-018-4521-8
  • Costoya, X., DeCastro, M., Carvalho, D., and Gómez-Gesteira, M. (2020). On the suitability of offshore wind energy resource in the United States of America for the 21st century. Appl. Energy . 262: 114537; DOI: https://doi.org/10.1016/j.apenergy.2020.114537
  • da Silva, A.E.F., Gomes, D.T., Silveira, C.S., Sakamoto, M.S. (2020). Performance of the cordex project simulations with regard to the representation of the patterns of variation of the precipitation in the XX century on the municipality of Fortaleza, Ceará. Revista Brasileira de Meteorologia. 35: 387-396; DOI: https://doi.org/10.1590/0102-7786353003
  • Davin E., et.al. (2020). Biogeophysical impacts of forestation in Europe: first results from the LUCAS (Land Use and Climate Across Scales) regional climate model intercomparison. -. -: -; DOI: https://www.earth-syst-dynam.net/11/183/2020/
  • de Jesus, E. M., et.al. (2020). Multi-model climate projections of the main cyclogenesis hot-spots and associated winds over the eastern coast of South America.. Climate Dynamics. 56: 537–557; DOI: https://doi.org/10.1007/s00382-020-05490-1
  • de la Vara, A.; Gutiérrez, C., González-Alemán, J.J., Gaertner, M.Á. (2020). Intercomparison Study of the Impact of Climate Change on Renewable Energy Indicators on the Mediterranean Islands.. Atmosphere. 11: 1036; DOI: https://doi.org/10.3390/atmos11101036
  • Demory M.-E., Berthou S., et al. (2020). European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev.. 13: 5485–5506; DOI: https://doi.org/10.5194/gmd-13-5485-2020
  • Di Virgilio G., et.al. (2020). Realised added value in dynamical downscaling of Australian climate change.. Climate Dynamics. 54: 4675–4692; DOI: https://doi.org/10.1007/s00382-020-05250-1
  • Dong-Kyou Lee and Dong-Hyun Cha (2020). Regional climate modeling for Asia. Geoscience Letters. 7: -; DOI: https://doi.org/10.1186/s40562-020-00162-8
  • Dosio A., et. al. (2020). A tale of two futures: contrasting scenarios of future precipitation for West Africa from an ensemble of regional climate models. Environmental Research Letters. 15: .; DOI: https://doi.org/10.1088/1748-9326/ab7fde
  • Driouech, F., et.al. (2020). Assessing Future Changes of Climate Extreme Events in the CORDEX-MENA Region Using Regional Climate Model ALADIN-Climate. Earth Systems and Environment. 4(3): 477-492; DOI: https://doi.org/10.1007/s41748-020-00169-3
  • Drobinski, P. et.al. (2020). How warmer and drier will the Mediterranean region be at the end of the twenty-first century?. Reg Environ Change . 20: 1-12; DOI: https://doi.org/10.1007/s10113-020-01659-w
  • Evans, J.P., et.al. (2020). The CORDEX-Australasia ensemble: evaluation and future projections. Climate Dynamics.. Climate Dynamics . 1-17: -; DOI: https://doi.org/10.1007/s00382-020-05459-0
  • Falco, M., et.al. (2020). The potential added value of Regional Climate Models in South America using a multiresolution approach. Climate Dynamics . 54: 1553-1569; DOI: https://doi.org/10.1007/s00382-019-05073-9
  • FJ de Medeiros, CP de Oliveira, CMS e Silva, (2020). Numerical simulation of the circulation and tropical teleconnection mechanisms of a severe drought event (2012-2016) in Northeastern Brazil. Climate Dynamics. 54: 4043–4057; DOI: https://doi.org/10.1007/s00382-020-05213-6
  • Fotso-Kamga G., Fotso-Nguemo T.C., Diallo I., Yepdo Z.D., et al. (2020). An evaluation of COSMO-CLM regional climate model in simulating precipitation over Central Africa. International Journal Climatology. 40: 2891–2912; DOI: https://doi.org/10.1002/joc.6372
  • García-García, A. et.al. (2020). Land surface model influence on the simulated climatologies of temperature and precipitation extremes in the WRF v3.9 model over North America. Geosci. Model Dev. 13: 5345-5366; DOI: https://doi.org/10.5194/gmd-13-5345-2020
  • Glazer, R.H., et.al. (2020). Projected changes to severe thunderstorm environments as a result of twenty-first century warming from RegCM CORDEX-CORE simulations. Climate Dynamics . n/a: 1-19; DOI: https://doi.org/10.1007/s00382-020-05439-4
  • Gunathilake et al. (2020). Evaluation of future climate and potential impact on streamflow in the Upper Nan River basin of Northern Thailand. Advances In Meteorology. 2020: 1-15; DOI: https://doi.org/10.1155/2020/8881118
  • Gutiérrez C., et.al. (2020). Future evolution of surface solar radiation and photovoltaic potential in Europe: investigating the role of aerosols.. Environ. Res. Lett.. 15: 34-35; DOI: https://doi.org/10.1088/1748-9326/ab6666
  • Gutierrez, C., et.al. (2020). Future evolution of surface solar radiation and photovoltaic potential in Europe : investigating the role of aerosols. Environ. Res. Lett.. 15: 034035; DOI: https://doi.org/10.1088/1748-9326/ab6666
  • Gutowski, W.J., and F. Giorgi, (2020). Coordination of regional downscaling. Oxford Research Encyclopedia of Climate Science. -: -; DOI: https://doi.org/10.1093/acrefore/9780190228620.013.658
  • Gutowski, W.J., et.al. (2020). The ongoing need for high-resolution regional climate models: Process understanding and stakeholder information. Bulletin of the American Meteorological Society. 101(5): E664–E683; DOI: https://doi.org/10.1175/BAMS-D-19-0113.1
  • Hernández-Díaz, L., et.al. (2020). Effect of empirical correction of sea-surface temperature biases on the CRCM5-simulated climate and projected climate changes over North America.. Clim. Dyn. 53: 453-476; DOI: https://doi.org/10.1007/s00382-018-4596-2
  • Herrera S., Soares P. M. M., Cardoso R. M., Gutiérrez J. M. (2020). Evaluation of the EURO‐CORDEX Regional Climate Models Over the Iberian Peninsula: Observational Uncertainty Analysis. Journal of Geophysical Research: Atmospheres. Volume 125, Issue 12: -; DOI: https://doi.org/10.1029/2020JD032880
  • Ilori O.W., Ajayi V.O (2020). Change detection and trend analysis of future temperature and rainfall over West Africa. Earth Systems and Environment . 4/3: 493-512 ; DOI: https://doi.org/10.1007/s41748-020-00174-6
  • Ilori O.W., Balogun I. A. (2020). Evaluating the performance of new CORDEX‑Africa regional climate models in simulating West African rainfall. Modeling Earth Systems and Environment. 7/1 : 1-24 ; DOI: https://doi.org/10.1007/s40808-021-01084-w
  • Jacob, D., et.al. (2020). Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community.. Reg Environ Change . 20: 51; DOI: https://doi.org/10.1007/s10113-020-01606-9
  • Jerez S, et al. (2020). On the spin‐up period in WRF simulations over Europe: Trade‐offs between length and seasonality. Journal of Advances in Modeling Earth Systems. 12: 1-18; DOI: https://doi.org/10.1029/2019MS001945
  • Kahraman, A; Ural, D; Onol, B (2020). Future Changes in Euro-Mediterranean Daytime Severe Thunderstorm Environments Based on an RCP8.5 Med-CORDEX Simulation. Atmosphere. 11: -; DOI: https://doi.org/10.3390/atmos11080822
  • Kim, G., et.al. (2020). Projection of future precipitation change over South Korea by regional climate models and bias correction methods. Theoretical and Applied Climatology volume. 141: 1415–1429; DOI: https://doi.org/10.1007/s00704-020-03282-5
  • Lavin-Gullon A., Fernandez J., Bastin S., Cardoso R.M et al. (2020). Internal variability versus multi‐physics uncertainty in a regional climate model. International Journal of Climatology. : -; DOI: https://doi.org/10.1002/joc.6717
  • Legasa M. N., et. al. (2020). Assessing Multidomain Overlaps and Grand Ensemble Generation in CORDEX Regional Projections. Geophysical Research Letters. Volume 47, Issue 4: .; DOI: https://doi.org/10.1029/2019GL086799
  • Llopart, M., et.al. (2020). Assessing changes in the atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains.. Climate Dynamics. n/a: 1-14; DOI: https://doi.org/10.1007/s00382-020-05539-1
  • Llopart, M., Reboita, M., & da Rocha, R. P (2020). Assessment of multi-model climate projections of water resources over South America CORDEX domain. Climate Dynamics . 54(1-2): 99-116; DOI: https://doi.org/10.1007/s00382-019-04990-z
  • Lucas‐Picher, P., et.al. (2020). Will Evolving Climate Conditions Increase the Risk of Floods of the Large U.S.‐Canada Transboundary Richelieu River Basin?. JAWRA J. Am. Water Resour. Assoc.. 57: 1752-1688; DOI: https://doi.org/10.1111/1752-1688.12891.
  • Luna-Niño, R., et.al. (2020). Interannual variability of the boreal winter subtropical jet stream and teleconnections over the CORDEX-CAM domain during 1980–2010.. Climate Dynamics. 1-24: -; DOI: https://doi.org/10.1007/s00382-020-05509-7
  • Molina, M.O., Sánchez, E., Gutierrez, C. (2020). Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble.. Sci Rep. 10: 8801; DOI: https://doi.org/10.1038/s41598-020-65663-0
  • Nabat, P., et.al. (2020). Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region. Atmos. Chem. Phys.. 20: 8315-8349; DOI: https://doi.org/10.5194/acp-20-8315-2020
  • Neri, A., Villarini, G., and Napolitano, F (2020). Statistically-based projected changes in the frequency of flood events across the U.S. Midwest.. J. Hydrol. 584: 124314; DOI: https://doi.org/10.1016/j.jhydrol.2019.124314
  • Ngai ST., et.al. (2020). Future projections of Malaysia daily precipitation characteristics using bias correction technique.. Atmospheric Research. 240: 104926; DOI: https://doi.org/10.1016/j.atmosres.2020.104926
  • Ngai ST., et.al. (2020). Extreme Rainfall Projections for Malaysia at the End of 21st Century Using the High Resolution Non-Hydrostatic Regional Climate Model (NHRCM).. SOLA. 16: 132-139; DOI: https://doi.org/10.2151/sola.2020-023
  • Nguyen-Thi T., et. al. (2020). Climate analogue and future appearance of novel climate in Southeast Asia. Int. J. Climatol. : 1-18; DOI: https://doi.org/10.1002/joc.6693
  • Ntoumos, A., Hadjinicolaou, P., Zittis, G., & Lelieveld, J. (2020). Updated Assessment of Temperature Extremes over the Middle East–North Africa (MENA) Region from Observational and CMIP5 Data.. Atmosphere. 11: 813; DOI: https://doi.org/10.3390/atmos11080813
  • Ou T., et al. (2020). Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization. Climate Dynamics. 54: 3525–3539; DOI: https://doi.org/10.1007/s00382-020-05181-x
  • Pagès, R., et.al. (2020). Projected effects of climate-induced changes in hydrodynamics on the biogeochemistry of the Mediterranean Sea under the RCP 8.5 regional climate scenario. Frontiers in Marine Science. 7: -; DOI: https://doi.org/10.3389/fmars.2020.563615
  • Parras-Berrocal, IM. et.al. (2020). The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere-ocean model. Ocean Science. 16: 743-765; DOI: https://doi.org/10.5194/os-16-743-2020
  • Pessacg, N., F. Silvia, S. Solman, P. Miguel (2020). Climate change in northern Patagonia: critical decrease in water resources.. Theoretical and Applied Climatology . 140: 807–822; DOI: https://doi.org/10.1007/s00704-020-03104-8
  • Pessag N., Silvia, F., Solman, S., Miguel, P (2020). Climate change in northern Patagonia: critical decrease in water resources.. Theoretical and Applied Climatology . 140: 807-822; DOI: https://doi.org/10.1007/s00704-020-03104-8
  • Reale, M., et.al. (2020). The Regional Earth System Model RegCM‐ES: Evaluation of the Mediterranean climate and marine biogeochemistry. Journal of Advances in Modeling Earth Systems. 12: -; DOI: https://doi.org/10.1029/2019MS001812
  • Reboita M. S., et. al. (2020). Future changes in the wintertime cyclonic activity over theCORDEX-CORE southern hemisphere domains in a multi-model approach. Climate Dynamics. : .; DOI: https://doi.org/10.1007/s00382-020-05317-z
  • Russo, E., et.al. (2020). Exploring the parameter space of the COSMO-CLM v5. 0 regional climate model for the Central Asia CORDEX domain.. Geoscientific Model Development. 13: 5779-5797; DOI: https://gmd.copernicus.org/articles/13/5779/2020/
  • Sedlar, J., et.al. (2020). Confronting Arctic troposphere, clouds, and surface energy budget representations in regional climate models with observations. Journal of Geophysical Research: Atmospheres. 124: -; DOI: https://doi.org/10.1029/2019JD031783
  • Shin, S-W, et.al. (2020). Application of Bias- and Variance-Corrected SST on Wintertime Precipitation Simulation of Regional Climate Model over East Asian Region. Asia-Pacific Journal of Atmospheric Sciences. 56: -; DOI: https://doi.org/10.1007/s13143-020-00189-z
  • Soto-Navarro, J. + et.al. (2020). Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble.. Climate Dynamics . 54: 2135-2165; DOI: https://doi.org/10.1007/s00382-019-05105-4
  • Spinoni J., et. al. (2020). Future global meteorological drought hotspots. A study based on CORDEX data. Journal of Climate. : 33(9), 3635–3661; DOI: https://doi.org/10.1175/JCLI-D-19-0084.1
  • Spinoni, J. et.al. (2020). Future global meteorological drought hot spots: a study based on CORDEX data.. Journal of Climate. 33: 3635-3661; DOI: https://doi.org/10.1175/JCLI-D-19-0084.1
  • Supari., et.al. (2020). Multi-model projections of precipitation extremes in Southeast Asia based on CORDEX-Southeast Asia simulations. Environmental Research, Environmental Research . 184: -; DOI: https://doi.org/10.1016/j.envres.2020.109350
  • Tangang F., et. al. (2020). Projected future changes in rainfall in Southeast Asia based on CORDEX-SEA multi-model simulations. Climate Dynamics. : .; DOI: https://doi.org/10.1007/s00382-020-05322-2
  • Thierry N. Taguela, D. A. Vondou, W. Moufouma‐Okia, T. C. Fotso‐Nguemo et al. (2020). CORDEX Multi‐RCM Hindcast Over Central Africa: Evaluation Within Observational Uncertainty. Journal of Geophysical Research: Atmospheres. 125: e2019JD031607; DOI: https://doi.org/10.1029/2019JD031607
  • Torma, CZ; Kis, A; Pongracz, R (2020). Evaluation of EURO-CORDEX and Med-CORDEX precipitation simulations for the Carpathian Region: Bias corrected data and projected changes.. IDOJARAS/QUARTERLY JOURNAL OF THE HUNGARIAN METEOROLOGICAL SERVICE. 124: 25-46; DOI: https://doi.org/10.28974/idojaras.2020.1.2