Generic selectors
Exact matches only
Search in title
Search in content
Search in posts
Search in pages

Publications 2019

  • Alba de la Vara, (2019). Role of atmospheric resolution in the long-term seasonal variability of the Tyrrhenian Sea circulation from a set of ocean hindcast simulations (1997-2008).. Ocean Modelling . 134: 51-67; DOI:
  • Almazroui M. (2019). Climate Extremes over the Arabian Peninsula Using RegCM4 for Present Conditions Forced by Several CMIP5 Models.. Atmosphere. 10(11): 675; DOI:
  • Almazroui M. (2019). Temperature Changes over the CORDEX-MENA Domain in the 21st Century Using CMIP5 Data Downscaled with RegCM4: A Focus on the Arabian Peninsula. Advances in Meteorology. : .; DOI:
  • Ambrizzi, T., (2019). The state of the art and fundamental aspects of regional climate modeling in South America. Annals of the New York Academy of Sciences,. 1436(1): 98-120; DOI:
  • Barella-Ortiz A., Quintana-Seguí P. (2019). Evaluation of drought representation and propagation in Regional Climate Model simulations over Spain. Hydrology and Earth System Sciences. : .; DOI:
  • Bastin S., (2019). Parracho: Impact of humidity biases on light precipitation occurrence: observations versus modelisation.. Atmos. Chem. Phys.. 19: 1471–1490; DOI:
  • Bozkurt D., Rojas M., Boisier J.P., Rondanelli R. (2019). Dynamical downscaling over the complex terrain of southwest South America: present climate conditions and added value analysis. Climate Dynamics. : 6745–6767; DOI:
  • Coppola E., et al. (2019). A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics. : 1-32; DOI:
  • Darmaraki S., et. al. (2019). Future evolution of Marine Heat Waves in the Mediterranean Sea. Climate Dynamics. 53: 1371–1392; DOI:
  • Di Virgilio G., et. al. (2019). Evaluating reanalysis-driven CORDEX regional climate models over Australia: model performance and errors. Climate Dynamics. 58(5): 2985-3005; DOI:
  • Drugé T., Nabat P., Mallet M., Somot S. (2019). Model simulation of ammonium and nitrate aerosols distribution in the Euro-Mediterranean region and their radiative and climatic effects over 1979-2016. Atmospheric Chemistry and Physics. 19, 37073731, 2019,. Special Issue: CHemistry and AeRosols Mediterranean EXperiments (ChArMEx) (ACP/AMT inter-journal SI): .; DOI:
  • Falco M., et. al. (2019). Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Climate Dynamics. 52(7-8): 4771–4786; DOI:
  • Fernandez J., Frias M.D., Cabos W. D., Cofiño A.S. et al. (2019). Consistency of climate change projections from multiple global and regional model intercomparison projects. Climate Dynamics. 52: 1139-1156; DOI:
  • Glisan J.M., et. al. (2019). A Metrics-Based Analysis of Seasonal Daily Precipitation and Near-Surface Temperature within Seven CORDEX Domains. Atmospheric Science Letters, . : Article ASL897 (online); DOI:
  • Gutiérrez J.M. (2019). An intercomparison of a large ensemble of statistical downscaling methods over Europe: results from the VALUE perfect predictor cross‐validation experiment. Int. J. Climatol. 39: 3750-3785; DOI:
  • Kotlarski S. et. al (2019). Observational uncertainty and regional climate model evaluation: A pan‐European perspective. Int. J. Climatol. 39: 3730-3749; DOI:
  • Long Trinh-Tuan (2019). Application of Quantile Mapping Bias Correction for Mid-Future Precipitation Projections over Vietnam. SOLA. 15: 1-6; DOI:
  • Mezghani A., et al. (2019). Subsampling Impact on the Climate Change Signal over Poland Based on Simulations from Statistical and Dynamical Downscaling. Journal of Applied Meteorology and Climatology. 58(5): pp.1061-1078; DOI:
  • Moullec F., et. al. (2019). An End-to-End Model Reveals Losers and Winners in a Warming Mediterranean Sea. Frontiers in Marine Science. : 6:345; DOI:
  • Raymond F., et. al. (2019). Evolution of Mediterranean extreme dry spells during the wet season under climate change. Regional Environmental Change. : .; DOI:
  • Schwingshackl C. et. al (2019). Regional climate model projections underestimate future warming due to missing plant physiological CO2 response. Environ. Res. Lett., . 14, 114019: .; DOI:
  • Solman S., Blázquez J. (2019). Multiscale precipitation variability over South America: Analysis of the added value of CORDEX RCM simulations. Climate Dynamics. 53: 1547–1565; DOI:
  • Szwed M., Dobler A., Mezghani A., Saloranta T.M. (2019). Change of maximum snow cover depth in Poland–trends and projections. Quarterly Journal of the Hungarian Meteorological Service. 123(4): pp.487-500; DOI:
  • Tan M.L., et. al. (2019). Future hydro-meteorological drought of the Johor River Basin, Malaysia, based on CORDEX-SEA Projections. Hydrological Sciences Journal. : .; DOI:
  • Tangang F., et al. (2019). Projected future changes in mean precipitation over Thailand based on multi-model regional simulations of CORDEX Southeast Asia. Int. J. Climatol. : 1-24; DOI:
  • Zittis, G., et. al. (2019). A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean.. Regional Environmental Change. 19(8): 2621–2635; DOI: