Publications 2019

  • Alba de la Vara, et.al. (2019). Role of atmospheric resolution in the long-term seasonal variability of the Tyrrhenian Sea circulation from a set of ocean hindcast simulations (1997-2008).. Ocean Modelling . 134: 51-67; DOI: https://doi.org/10.1016/j.ocemod.2019.01.004
  • Almazroui M. (2019). Climate Extremes over the Arabian Peninsula Using RegCM4 for Present Conditions Forced by Several CMIP5 Models.. Atmosphere. 10(11): 675; DOI: https://doi.org/10.1007/s10113-019-01565-w
  • Almazroui M. (2019). Temperature Changes over the CORDEX-MENA Domain in the 21st Century Using CMIP5 Data Downscaled with RegCM4: A Focus on the Arabian Peninsula. Advances in Meteorology. : .; DOI: https://doi.org/10.1155/2019/5395676
  • Ambrizzi, T., et.al. (2019). The state of the art and fundamental aspects of regional climate modeling in South America. Annals of the New York Academy of Sciences,. 1436(1): 98-120; DOI: https://doi.org/10.1111/nyas.13932
  • Barella-Ortiz A., Quintana-Seguí P. (2019). Evaluation of drought representation and propagation in Regional Climate Model simulations over Spain. Hydrology and Earth System Sciences. : .; DOI: https://doi.org/10.5194/hess-2018-603
  • Bastin S., et.al. (2019). Parracho: Impact of humidity biases on light precipitation occurrence: observations versus modelisation.. Atmos. Chem. Phys.. 19: 1471–1490; DOI: https://doi.org/10.5194/acp-19-1471-2019
  • Bozkurt D., Rojas M., Boisier J.P., Rondanelli R. (2019). Dynamical downscaling over the complex terrain of southwest South America: present climate conditions and added value analysis. Climate Dynamics. : 6745–6767; DOI: https://doi.org/10.1007/s00382-019-04959-y
  • Coppola E., et al. (2019). A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics. : 1-32; DOI: https://doi.org/10.1007/s00382-018-4521-8
  • Darmaraki S., et. al. (2019). Future evolution of Marine Heat Waves in the Mediterranean Sea. Climate Dynamics. 53: 1371–1392; DOI: https://doi.org/10.1007%2Fs00382-019-04661-z
  • Di Virgilio G., et. al. (2019). Evaluating reanalysis-driven CORDEX regional climate models over Australia: model performance and errors. Climate Dynamics. 58(5): 2985-3005; DOI: https://doi.org/10.1007/s00382-019-04672-w
  • Drugé T., Nabat P., Mallet M., Somot S. (2019). Model simulation of ammonium and nitrate aerosols distribution in the Euro-Mediterranean region and their radiative and climatic effects over 1979-2016. Atmospheric Chemistry and Physics. 19, 37073731, 2019,. Special Issue: CHemistry and AeRosols Mediterranean EXperiments (ChArMEx) (ACP/AMT inter-journal SI): .; DOI: https://doi.org/10.5194/acp-19-3707-2019
  • Falco M., et. al. (2019). Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Climate Dynamics. 52(7-8): 4771–4786; DOI: https://doi.org/10.1007/s00382-018-4412-z
  • Fernandez J., Frias M.D., Cabos W. D., Cofiño A.S. et al. (2019). Consistency of climate change projections from multiple global and regional model intercomparison projects. Climate Dynamics. 52: 1139-1156; DOI: https://doi.org/10.1007/s00382-018-4181-8
  • Fotso-Nguemo T.C., Diallo I., Diakhaté,M., Vondou D.A., et al. (2019). Projected changes in the seasonal cycle of extreme rainfall events from CORDEX simulations over Central Africa. Climatic Change. 155: 339–357; DOI: https://doi.org/10.1007/s10584-019-02492-9
  • Glisan J.M., et. al. (2019). A Metrics-Based Analysis of Seasonal Daily Precipitation and Near-Surface Temperature within Seven CORDEX Domains. Atmospheric Science Letters, . : Article ASL897 (online); DOI: https://doi.org/10.1002/asl.897
  • Gutiérrez J.M. (2019). An intercomparison of a large ensemble of statistical downscaling methods over Europe: results from the VALUE perfect predictor cross‐validation experiment. Int. J. Climatol. 39: 3750-3785; DOI: https://doi.org/10.1002/joc.5462
  • Hasson, S., Böhner, J., Chishtie, F. (2019). Low fidelity of CORDEX and their driving experiments indicates future climatic uncertainty over Himalayan watersheds of Indus basin. Climate Dynamics. 52: 777–798; DOI: https://doi.org/10.1007/s00382-018-4160-0
  • Im, E-S., et.al. (2019). 2018 summer extreme temperatures in South Korea and their intensification under 3 °C global warming. Environmental Research Letters. 14: -; DOI: https://doi.org/10.1088/1748-9326/ab3b8f
  • Jerez S, et al. (2019). Future changes, or lack thereof, in the temporal variability of the combined wind-plus-solar power production in Europe. Renewable Energy. 139: 251-260; DOI: https://doi.org/10.1016/j.renene.2019.02.060
  • Kotlarski S. et. al (2019). Observational uncertainty and regional climate model evaluation: A pan‐European perspective. Int. J. Climatol. 39: 3730-3749; DOI: https://doi.org/10.1002/joc.5249
  • Lee, H., et.al. (2019). Future Change in Tropical Cyclone Activity over the western North Pacific in the CORDEX-East Asia Multi-RCMs forced by HadGEM2-AO. Journal of Climate. 32: 5053–5067; DOI: https://doi.org/10.1175/JCLI-D-18-0575.1
  • Long Trinh-Tuan (2019). Application of Quantile Mapping Bias Correction for Mid-Future Precipitation Projections over Vietnam. SOLA. 15: 1-6; DOI: https://doi.org/10.2151/sola.2019-001
  • Mezghani A., et al. (2019). Subsampling Impact on the Climate Change Signal over Poland Based on Simulations from Statistical and Dynamical Downscaling. Journal of Applied Meteorology and Climatology. 58(5): pp.1061-1078; DOI: https://doi.org/10.1175/JAMC-D-18-0179.1
  • Moullec F., et. al. (2019). An End-to-End Model Reveals Losers and Winners in a Warming Mediterranean Sea. Frontiers in Marine Science. : 6:345; DOI: https://doi.org/10.3389/fmars.2019.00345
  • Raymond F., et. al. (2019). Evolution of Mediterranean extreme dry spells during the wet season under climate change. Regional Environmental Change. : .; DOI: https://doi.org/10.1007/s10113-019-01526-3
  • Schwingshackl C. et. al (2019). Regional climate model projections underestimate future warming due to missing plant physiological CO2 response. Environ. Res. Lett., . 14, 114019: .; DOI: https://doi.org/10.1088/1748-9326/ab4949
  • Sera Jo, et.al. (2019). The Köppen-Trewartha climate-type changes over the CORDEX-East Asia Phase 2 domain under 2 and 3°C global warming. Geophysical Research Letters. 46: 14030-14041; DOI: https://doi.org/10.1029/2019GL085452
  • Solman S., Blázquez J. (2019). Multiscale precipitation variability over South America: Analysis of the added value of CORDEX RCM simulations. Climate Dynamics. 53: 1547–1565; DOI: https://doi.org/10.1007/s00382-019-04689-1
  • Szwed M., Dobler A., Mezghani A., Saloranta T.M. (2019). Change of maximum snow cover depth in Poland–trends and projections. Quarterly Journal of the Hungarian Meteorological Service. 123(4): pp.487-500; DOI: https://www.met.hu/en/ismeret-tar/kiadvanyok/idojaras/index.php?id=668
  • Tan M.L., et. al. (2019). Future hydro-meteorological drought of the Johor River Basin, Malaysia, based on CORDEX-SEA Projections. Hydrological Sciences Journal. : .; DOI: https://doi.org/10.1080/02626667.2019.1612901
  • Tangang F., et al. (2019). Projected future changes in mean precipitation over Thailand based on multi-model regional simulations of CORDEX Southeast Asia. Int. J. Climatol. : 1-24; DOI: https://doi.org/10.1002/joc.6163
  • Zittis, G., et. al. (2019). A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean.. Regional Environmental Change. 19(8): 2621–2635; DOI: https://doi.org/10.1007/s10113-019-01565-w