The CORDEX-FPS in Southeastern
South America: a comparative study
of statistical and dynamical
downscaling models in simulating
daily extreme precipitation events

<u>Bettolli ML</u>, Solman S, da Rocha RP, Gutiérrez JM, Llopart M, Fernández J, Lavín-Gullón A, Coppola E, Chou S, Doyle M, Feijoo M, Huth R, Barreiro M, Olmo M, Vianna Cuadra S, Machado L, Farneti R, Carneiro Rodrigues D

The FPS in SESA

SOUTHEASTERN SOUTH AMERICA (SESA)

- Motivation
- Objectives
- Strategies
- Challenges
- Impact on regional networks
- Future steps.

Motivation

- In SESA, extreme precipitation events are:
 - typical features.
 - becoming more frequent and more intense.
- They have large socio-economic and hydrologic impacts.
- There are limited ESD studies in the region.
- There is a need for developing RCM and ESD coordinated actions.

Motivation

Objectives

- to study multi-scale processes and interactions that result in extreme precipitation events;
- to develop actionable climate information from statistical and dynamical downscaling based on co-production with the impact and user community

Contributors

ARGENTINA

DCAO-University of Buenos Aires

CIMA-CONICET

Argentine National Weather Service (SMN)

BRAZIL

University of São Paulo (USP)

São Paulo State University (UNESP)

Center for Weather Forecasting and Climate Studies (CPTEC)

National Institute for Space Research (INPE)

Brazilian Agricultural Research Corporation (EMBRAPA)

URUGUAY

Department of Atmospheric Sciences, University of the Republic

CZECH REPUBLIC

Charles University in Prague

SPAIN

CSIC / University of Cantabria

ITALY

Abdus Salam International Centre for Theoretical Physics (ICTP)

- High number of extreme events during
 2009-2010 warm season (October to March).
- Three case studies within that season were selected.

Case 1

Station Data

3-day event: 2009-11-21 to 23 event peak: 22-11-2009

station max: 155 mm/day

Case 2

3-day event: 2010-01-18 to 20

event peak: 19-01-2010

station max: 165.4 mm/day

Case 3

3-day event: 2010-02-19 to 21

event peak: 20-02-2010 station max: 150 mm/day

3-day accumulated precipitation (mm/day)

RCM Simulations

Two simulation types:

Weather like mode (WL): simulation starts ~12 hours before initial phase of each one of three extreme events;

Climate mode (CM): continuous simulation (seasonal) starting at 01-10-2009 ending at 31-03-2010.

Two domains:

~ 20 (CSAM-20i) and 4 (SESA-4i) km of grid spacing

RCM Simulations

Initial and boundary conditions:

CSAM-20i experiments are nested in ERA-Interim reanalysis;

SESA-4i experiments are nested in CSAMi-20i;

Models:

RegCM4 (USP-UNESP, Brazil)

WRF391 (CIMA, Argentina)

WRF381 (IFCA/UCAN, Spain)

ETA (INPE, Brazil)

ESD Simulations

Training and Test

Training: 1979-2009

Test: 2009-2010

Predictors:

ERA-Interim reanalysis

JRA reanalysis

Predictands:

Station Data: daily Pr, Tx and Tn

MSWEP: daily Pr

Models:

GLM (4)

Analogs (3)

ESD Simulations

Training and Test

Training: 1979-2009

Test: 2009-2010

Predictors:

ERA-Interim reanalysis

JRA reanalysis

Predictands:

Station Data: daily Pr, Tx and Tn

MSWEP: daily Pr

Models:

The ESD experiment was designed with the aim of **comparing the** results with the RCM simulations and exploring the performance of ESD in the region with focus on extreme events.

Objectives

- to study multi-scale processes and interactions that result in extreme precipitation events;
- to develop actionable climate information from statistical and dynamical downscaling based on co-production with the impact and user community

Actionable Climate Information

Uruguay River Basin

- Basin area ~ 365000 km²
- Ave Discharge Paso de los Libres ~ 3000 m³/s

Hydrological Model: VIC Variable Infiltration Capacity

Argentine National Weather Service-University of Buenos Aires

Challenges

Financial Resources

Low local financial support

European financial support: visits and mobility

Human Resources
 3 PhD students: 2 University of Buenos Aires
 1 Physics Institute of Cantabria

Impact on Regional Networks

- Enhanced regional networks
- Enhanced inter-institutional collaboration
- Data sharing
- Proposals submissions
- Capacity building activities
- CORDEX visibility

Future steps

- Finalize simulations and analysis of results
- Establish a protocol for ESD and RCM comparisons and validation framework
- Use of data in impact studies

Upcoming Activities

ICTP Conference on Regional Climate Modeling and Extreme Events over South America: Results from the CORDEX-Flagship Pilot Study (SMR 3428): 17-19 November 2020, Buenos Aires, Argentina

